Configuration
This page documents the configuration schema consumed by SkyulfPipeline and FeatureEngineer.
Pipeline config
SkyulfPipeline expects:
{
"preprocessing": [ ... ],
"modeling": { ... }
}
Preprocessing config
The preprocessing list is executed in order.
Each step is:
{
"name": "step_name",
"transformer": "TransformerType",
"params": { ... }
}
TransformerType is a string key that FeatureEngineer dispatches to a Calculator/Applier pair.
For the full list and per-node parameters, see:
- Reference → Preprocessing Nodes
- Reference → API → Preprocessing → pipeline
Minimal examples
# Split to avoid leakage
{"name": "split", "transformer": "TrainTestSplitter", "params": {"test_size": 0.2, "random_state": 42, "target_column": "target"}}
# Impute missing numeric values
{"name": "impute", "transformer": "SimpleImputer", "params": {"strategy": "mean", "columns": ["age"]}}
# Encode categoricals
{"name": "encode", "transformer": "OneHotEncoder", "params": {"columns": ["city"], "drop_original": True, "handle_unknown": "ignore"}}
# Scale numeric columns
{"name": "scale", "transformer": "StandardScaler", "params": {"auto_detect": True}}
Modeling config
SkyulfPipeline currently supports these model types:
logistic_regressionrandom_forest_classifierridge_regressionrandom_forest_regressorhyperparameter_tuner
Example:
{
"type": "random_forest_classifier",
"node_id": "model_node",
"params": {
"n_estimators": 200,
"max_depth": 10
}
}
Tuner example:
{
"type": "hyperparameter_tuner",
"base_model": {"type": "logistic_regression"},
"strategy": "random",
"search_space": {"C": [0.1, 1.0, 10.0]},
"n_trials": 25,
"metric": "accuracy"
}
See “Modeling Nodes” in Reference for details.