Skip to content

API: modeling.tuning.engine

skyulf.modeling.tuning.engine

Hyperparameter Tuner implementation.

TuningApplier

Bases: BaseModelApplier

Applier for TuningCalculator. Wraps the base model applier to provide predictions using the refitted best model.

Source code in skyulf-core\skyulf\modeling\tuning\engine.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
class TuningApplier(BaseModelApplier):
    """
    Applier for TuningCalculator.
    Wraps the base model applier to provide predictions using the refitted best model.
    """

    def __init__(self, base_applier: BaseModelApplier):
        self.base_applier = base_applier

    def predict(self, df: pd.DataFrame, model_artifact: Any) -> pd.Series:
        # model_artifact is (fitted_model, tuning_result)
        if isinstance(model_artifact, tuple) and len(model_artifact) == 2:
            model, _ = model_artifact
            return self.base_applier.predict(df, model)
        # Fallback if artifact is just the result (legacy)
        return pd.Series(np.nan, index=df.index)

    def predict_proba(
        self, df: pd.DataFrame, model_artifact: Any
    ) -> Optional[pd.DataFrame]:
        if isinstance(model_artifact, tuple) and len(model_artifact) == 2:
            model, _ = model_artifact
            return self.base_applier.predict_proba(df, model)
        return None

TuningCalculator

Bases: BaseModelCalculator

Calculator for hyperparameter tuning.

Source code in skyulf-core\skyulf\modeling\tuning\engine.py
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
class TuningCalculator(BaseModelCalculator):
    """Calculator for hyperparameter tuning."""

    def __init__(self, model_calculator: BaseModelCalculator):
        self.model_calculator = model_calculator

    @property
    def problem_type(self) -> str:
        return self.model_calculator.problem_type

    def _clean_search_space(self, search_space: Dict[str, Any]) -> Dict[str, Any]:
        """
        Recursively cleans the search space.
        - Converts "none" string to None.
        """
        cleaned: Dict[str, Any] = {}
        for k, v in search_space.items():
            if isinstance(v, list):
                cleaned[k] = [None if x == "none" else x for x in v]
            elif isinstance(v, dict):
                cleaned[k] = self._clean_search_space(v)
            else:
                cleaned[k] = None if v == "none" else v
        return cleaned

    def fit(
        self,
        X: Union[pd.DataFrame, SkyulfDataFrame],
        y: Union[pd.Series, Any],
        config: Dict[str, Any],
        progress_callback: Optional[
            Callable[[int, int, Optional[float], Optional[Dict]], None]
        ] = None,
        log_callback: Optional[Callable[[str], None]] = None,
        validation_data: Optional[tuple[Union[pd.DataFrame, SkyulfDataFrame], Union[pd.Series, Any]]] = None,
    ) -> Any:
        """
        Fits the tuner (runs tuning).
        Adapts the generic fit interface to the specific tune method.
        """
        # Convert config dict to TuningConfig
        if isinstance(config, TuningConfig):
            tuning_config = config
        else:
            # Extract valid keys for TuningConfig
            valid_keys = TuningConfig.__annotations__.keys()
            filtered_config = {k: v for k, v in config.items() if k in valid_keys}
            tuning_config = TuningConfig(**filtered_config)  # type: ignore

        # Convert data to Numpy for tuning
        X_np, y_np = SklearnBridge.to_sklearn((X, y))

        validation_data_np = None
        if validation_data:
            X_val, y_val = validation_data
            X_val_np, y_val_np = SklearnBridge.to_sklearn((X_val, y_val))
            validation_data_np = (X_val_np, y_val_np)

        tuning_result = self.tune(
            X_np,
            y_np,
            tuning_config,
            progress_callback=progress_callback,
            log_callback=log_callback,
            validation_data=validation_data_np,
        )

        # Refit the best model on the full dataset
        best_params = tuning_result.best_params
        final_params = {**self.model_calculator.default_params, **best_params}

        # Ensure random_state is passed if available in config and not in params
        if "random_state" not in final_params and hasattr(
            tuning_config, "random_state"
        ):
            final_params["random_state"] = tuning_config.random_state

        if log_callback:
            log_callback(f"Refitting best model with params: {final_params}")

        # Mypy doesn't know that model_calculator has model_class because it's typed as BaseModelCalculator
        # We can cast it or ignore it.
        model_cls = getattr(self.model_calculator, "model_class", None)
        if not model_cls:
            raise ValueError("Model calculator does not have a model_class attribute")

        model = model_cls(**final_params)
        model.fit(X_np, y_np)

        return (model, tuning_result)

    def tune(  # noqa: C901
        self,
        X: Any,
        y: Any,
        config: TuningConfig,
        progress_callback: Optional[
            Callable[[int, int, Optional[float], Optional[Dict]], None]
        ] = None,
        log_callback: Optional[Callable[[str], None]] = None,
        validation_data: Optional[tuple[Any, Any]] = None,
    ) -> TuningResult:
        """
        Runs hyperparameter tuning.
        """
        # 1. Prepare Estimator
        # We need a base estimator. Since our Calculator wraps the class,
        # we need to instantiate the underlying sklearn model with default params.
        # Assuming model_calculator is SklearnCalculator
        if not hasattr(self.model_calculator, "model_class"):
            raise ValueError("Tuner currently only supports SklearnCalculator")

        base_estimator = self.model_calculator.model_class(
            **self.model_calculator.default_params
        )

        # 2. Prepare Splitter
        # If validation data is provided, use PredefinedSplit to train on X and validate on validation_data
        # Otherwise use CV

        X_for_search = X
        y_for_search = y

        if validation_data is not None:
            from sklearn.model_selection import PredefinedSplit

            X_val, y_val = validation_data

            # Concatenate Train and Val (Numpy arrays)
            X_for_search = np.concatenate([X, X_val], axis=0)
            y_for_search = np.concatenate([y, y_val], axis=0)

            # Create test_fold array: -1 for train, 0 for val
            # -1 means "never in test set" (so always in training set)
            # 0 means "in test set for fold 0"
            test_fold = np.concatenate([np.full(len(X), -1), np.full(len(X_val), 0)])

            cv = PredefinedSplit(test_fold)
        else:
            if not config.cv_enabled:
                # Single split validation (20% holdout)
                cv = ShuffleSplit(
                    n_splits=1, test_size=0.2, random_state=config.random_state
                )
            elif config.cv_type == "time_series_split":
                cv = TimeSeriesSplit(n_splits=config.cv_folds)
            elif config.cv_type == "shuffle_split":
                cv = ShuffleSplit(
                    n_splits=config.cv_folds,
                    test_size=0.2,
                    random_state=config.random_state,
                )
            elif (
                config.cv_type == "stratified_k_fold"
                and self.model_calculator.problem_type == "classification"
            ):
                cv = StratifiedKFold(
                    n_splits=config.cv_folds,
                    shuffle=True,
                    random_state=config.random_state,
                )
            else:
                # Default to KFold (also fallback for stratified if regression)
                cv = KFold(
                    n_splits=config.cv_folds,
                    shuffle=True,
                    random_state=config.random_state,
                )

        # 3. Select Search Strategy
        searcher = None

        # Handle multiclass metrics and map user-friendly names
        metric = config.metric

        # Map common user-friendly metrics to sklearn scoring strings
        metric_map = {
            "mse": "neg_mean_squared_error",
            "mae": "neg_mean_absolute_error",
            "rmse": "neg_root_mean_squared_error",
            "r2": "r2",
            "accuracy": "accuracy",
            "f1": "f1",
            "precision": "precision",
            "recall": "recall",
            "roc_auc": "roc_auc",
        }

        if metric in metric_map:
            metric = metric_map[metric]

        if self.model_calculator.problem_type == "classification":
            # Check if target is multiclass
            is_multiclass = False
            if isinstance(y, pd.Series):
                is_multiclass = y.nunique() > 2
            elif isinstance(y, np.ndarray):
                is_multiclass = len(np.unique(y)) > 2

            # If multiclass and metric is binary-default, switch to weighted
            # Note: We check against the mapped names now (e.g. "f1", "precision")
            if is_multiclass and metric in ["f1", "precision", "recall", "roc_auc"]:
                metric = f"{metric}_weighted"
                # roc_auc needs special handling (ovr/ovo) usually, but weighted often works for simple cases
                if (
                    config.metric == "roc_auc"
                ):  # Check original config metric name just in case
                    metric = "roc_auc_ovr_weighted"

        if config.strategy in ["grid", "random"]:
            # Use custom loop to support progress and log callbacks
            if log_callback:
                log_callback(
                    f"Starting {config.strategy} search with custom loop for detailed logging..."
                )

            # 1. Generate Candidates
            param_space = self._clean_search_space(config.search_space)
            candidates = []

            if config.strategy == "grid":
                candidates = list(ParameterGrid(param_space))
            else:
                # Random Search
                candidates = list(
                    ParameterSampler(
                        param_space,
                        n_iter=config.n_trials,
                        random_state=config.random_state,
                    )
                )

            total_candidates = len(candidates)
            if log_callback:
                log_callback(f"Total candidates to evaluate: {total_candidates}")

            trials: List[Dict[str, Any]] = []
            best_score = -float("inf")
            best_params = None

            # 2. Iterate Candidates
            for i, params in enumerate(candidates):
                if log_callback:
                    log_callback(
                        f"Evaluating Candidate {i + 1}/{total_candidates}: {params}"
                    )

                # Use custom cross-validation loop to enable per-fold logging and progress tracking.
                # We instantiate the model with the current candidate parameters and evaluate it
                # using the configured CV strategy.

                fold_scores = []

                # Ensure numpy
                X_arr = (
                    X_for_search.to_numpy()
                    if hasattr(X_for_search, "to_numpy")
                    else X_for_search
                )
                y_arr = (
                    y_for_search.to_numpy()
                    if hasattr(y_for_search, "to_numpy")
                    else y_for_search
                )

                for fold_idx, (train_idx, val_idx) in enumerate(cv.split(X_arr, y_arr)):
                    # Split
                    X_train_fold = (
                        X_for_search.iloc[train_idx]
                        if hasattr(X_for_search, "iloc")
                        else X_for_search[train_idx]
                    )
                    y_train_fold = (
                        y_for_search.iloc[train_idx]
                        if hasattr(y_for_search, "iloc")
                        else y_for_search[train_idx]
                    )
                    X_val_fold = (
                        X_for_search.iloc[val_idx]
                        if hasattr(X_for_search, "iloc")
                        else X_for_search[val_idx]
                    )
                    y_val_fold = (
                        y_for_search.iloc[val_idx]
                        if hasattr(y_for_search, "iloc")
                        else y_for_search[val_idx]
                    )

                    # Instantiate and Fit
                    # Note: We must handle potential errors (e.g. incompatible params)
                    try:
                        model = self.model_calculator.model_class(
                            **{**self.model_calculator.default_params, **params}
                        )
                        model.fit(X_train_fold, y_train_fold)

                        # Score
                        from sklearn.metrics import get_scorer

                        scorer = get_scorer(metric)
                        score = scorer(model, X_val_fold, y_val_fold)
                        fold_scores.append(score)

                        if log_callback:
                            n_splits = cv.get_n_splits(X_arr, y_arr)
                            log_callback(
                                f"  [Candidate {i + 1}] CV Fold {fold_idx + 1}/{n_splits} Score: {score:.4f}"
                            )
                    except Exception as e:
                        if log_callback:
                            n_splits = cv.get_n_splits(X_arr, y_arr)
                            log_callback(
                                f"  [Candidate {i + 1}] CV Fold {fold_idx + 1}/{n_splits} Failed: {str(e)}"
                            )
                        fold_scores.append(-float("inf"))

                # Filter out failed folds for mean calculation if possible, or penalize
                valid_scores = [s for s in fold_scores if s != -float("inf")]
                if valid_scores:
                    mean_score = np.mean(valid_scores)
                else:
                    mean_score = -float("inf")

                if log_callback:
                    log_callback(f"Candidate {i + 1} Mean Score: {mean_score:.4f}")

                if progress_callback:
                    progress_callback(i + 1, total_candidates, mean_score, params)

                trials.append({"params": params, "score": mean_score})

                if mean_score > best_score:
                    best_score = mean_score
                    best_params = params

            if log_callback:
                log_callback(f"Tuning Completed. Best Score: {best_score:.4f}")
                log_callback(f"Best Params: {best_params}")

            return TuningResult(
                best_params=best_params if best_params is not None else {},
                best_score=best_score,
                n_trials=total_candidates,
                trials=trials,
            )

        elif config.strategy == "halving_grid":
            searcher = HalvingGridSearchCV(
                estimator=base_estimator,
                param_grid=self._clean_search_space(config.search_space),
                scoring=metric,
                cv=cv,
                n_jobs=-1,
                random_state=config.random_state,
                refit=False,
                error_score=np.nan,
            )
        elif config.strategy == "halving_random":
            searcher = HalvingRandomSearchCV(
                estimator=base_estimator,
                param_distributions=self._clean_search_space(config.search_space),
                n_candidates=config.n_trials,  # Map n_trials to n_candidates
                scoring=metric,
                cv=cv,
                n_jobs=-1,
                random_state=config.random_state,
                refit=False,
                error_score=np.nan,
            )
        elif config.strategy == "optuna":
            if not HAS_OPTUNA:
                raise ImportError(
                    "Optuna is not installed. Please install 'optuna' and 'optuna-integration'."
                )

            # Convert search space to Optuna distributions
            distributions = {}
            for k, v in config.search_space.items():
                if isinstance(v, list):
                    distributions[k] = optuna.distributions.CategoricalDistribution(v)
                else:
                    distributions[k] = v

            # Optuna callbacks
            callbacks = []
            if progress_callback:

                def _optuna_callback(study, trial):
                    # Optuna doesn't know total trials upfront easily if not set, but we have config.n_trials
                    # trial.value is the score (or None if failed/pruned)
                    score = trial.value if trial.value is not None else None

                    if log_callback:
                        log_callback(
                            f"Optuna Trial {trial.number + 1} finished. Mean CV Score: {score}"
                        )

                    progress_callback(
                        trial.number + 1, config.n_trials, score, trial.params
                    )

                callbacks.append(_optuna_callback)

            searcher = OptunaSearchCV(
                estimator=base_estimator,
                param_distributions=distributions,
                n_trials=config.n_trials,
                timeout=config.timeout,
                cv=cv,  # type: ignore
                scoring=metric,
                n_jobs=-1,
                random_state=config.random_state,
                refit=False,
                verbose=0,
                callbacks=callbacks,
            )
        else:
            raise ValueError(f"Unknown tuning strategy: {config.strategy}")

        # 4. Run Search
        # Ensure numpy
        X_arr = (
            X_for_search.to_numpy()
            if hasattr(X_for_search, "to_numpy")
            else X_for_search
        )
        y_arr = (
            y_for_search.to_numpy()
            if hasattr(y_for_search, "to_numpy")
            else y_for_search
        )

        try:
            with warnings.catch_warnings():
                warnings.filterwarnings(
                    "ignore",
                    message="Failed to report cross validation scores for TerminatorCallback",
                )
                searcher.fit(X_arr, y_arr)
        except Exception as e:
            logger.error(f"Hyperparameter tuning failed: {str(e)}")
            error_msg = str(e)
            if "No trials are completed yet" in error_msg:
                raise ValueError(
                    "Hyperparameter tuning failed: No trials completed successfully. "
                    "This usually means the model failed to train with the provided hyperparameter combinations. "
                    "Please check your search space and data."
                ) from e

            if (
                "n_samples" in error_msg
                and "resample" in error_msg
                and "Got 0" in error_msg
            ):
                raise ValueError(
                    "Hyperparameter tuning with Halving strategy failed because the dataset is too small "
                    "for the configured halving parameters. Please try using 'Random Search' or 'Grid Search' instead, "
                    "or increase your dataset size."
                ) from e

            raise e

        # 5. Extract Results
        if not hasattr(searcher, "best_params_"):
            raise ValueError(
                "Hyperparameter tuning failed to find any valid combination of parameters. All trials likely failed."
            )

        best_params = searcher.best_params_
        best_score = searcher.best_score_

        # Collect trials
        trials = []
        # Special handling for Optuna
        if config.strategy == "optuna" and hasattr(searcher, "study_"):
            for trial in searcher.study_.trials:
                # Only include completed trials
                if trial.state.name == "COMPLETE":
                    trials.append({"params": trial.params, "score": trial.value})
        elif hasattr(searcher, "cv_results_"):
            results = searcher.cv_results_
            if "params" in results:
                n_candidates = len(results["params"])
                for i in range(n_candidates):
                    trials.append(
                        {
                            "params": results["params"][i],
                            "score": results["mean_test_score"][i],
                        }
                    )

        return TuningResult(
            best_params=best_params,
            best_score=best_score,
            n_trials=len(trials),
            trials=trials,
        )

fit(X, y, config, progress_callback=None, log_callback=None, validation_data=None)

Fits the tuner (runs tuning). Adapts the generic fit interface to the specific tune method.

Source code in skyulf-core\skyulf\modeling\tuning\engine.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def fit(
    self,
    X: Union[pd.DataFrame, SkyulfDataFrame],
    y: Union[pd.Series, Any],
    config: Dict[str, Any],
    progress_callback: Optional[
        Callable[[int, int, Optional[float], Optional[Dict]], None]
    ] = None,
    log_callback: Optional[Callable[[str], None]] = None,
    validation_data: Optional[tuple[Union[pd.DataFrame, SkyulfDataFrame], Union[pd.Series, Any]]] = None,
) -> Any:
    """
    Fits the tuner (runs tuning).
    Adapts the generic fit interface to the specific tune method.
    """
    # Convert config dict to TuningConfig
    if isinstance(config, TuningConfig):
        tuning_config = config
    else:
        # Extract valid keys for TuningConfig
        valid_keys = TuningConfig.__annotations__.keys()
        filtered_config = {k: v for k, v in config.items() if k in valid_keys}
        tuning_config = TuningConfig(**filtered_config)  # type: ignore

    # Convert data to Numpy for tuning
    X_np, y_np = SklearnBridge.to_sklearn((X, y))

    validation_data_np = None
    if validation_data:
        X_val, y_val = validation_data
        X_val_np, y_val_np = SklearnBridge.to_sklearn((X_val, y_val))
        validation_data_np = (X_val_np, y_val_np)

    tuning_result = self.tune(
        X_np,
        y_np,
        tuning_config,
        progress_callback=progress_callback,
        log_callback=log_callback,
        validation_data=validation_data_np,
    )

    # Refit the best model on the full dataset
    best_params = tuning_result.best_params
    final_params = {**self.model_calculator.default_params, **best_params}

    # Ensure random_state is passed if available in config and not in params
    if "random_state" not in final_params and hasattr(
        tuning_config, "random_state"
    ):
        final_params["random_state"] = tuning_config.random_state

    if log_callback:
        log_callback(f"Refitting best model with params: {final_params}")

    # Mypy doesn't know that model_calculator has model_class because it's typed as BaseModelCalculator
    # We can cast it or ignore it.
    model_cls = getattr(self.model_calculator, "model_class", None)
    if not model_cls:
        raise ValueError("Model calculator does not have a model_class attribute")

    model = model_cls(**final_params)
    model.fit(X_np, y_np)

    return (model, tuning_result)

tune(X, y, config, progress_callback=None, log_callback=None, validation_data=None)

Runs hyperparameter tuning.

Source code in skyulf-core\skyulf\modeling\tuning\engine.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
def tune(  # noqa: C901
    self,
    X: Any,
    y: Any,
    config: TuningConfig,
    progress_callback: Optional[
        Callable[[int, int, Optional[float], Optional[Dict]], None]
    ] = None,
    log_callback: Optional[Callable[[str], None]] = None,
    validation_data: Optional[tuple[Any, Any]] = None,
) -> TuningResult:
    """
    Runs hyperparameter tuning.
    """
    # 1. Prepare Estimator
    # We need a base estimator. Since our Calculator wraps the class,
    # we need to instantiate the underlying sklearn model with default params.
    # Assuming model_calculator is SklearnCalculator
    if not hasattr(self.model_calculator, "model_class"):
        raise ValueError("Tuner currently only supports SklearnCalculator")

    base_estimator = self.model_calculator.model_class(
        **self.model_calculator.default_params
    )

    # 2. Prepare Splitter
    # If validation data is provided, use PredefinedSplit to train on X and validate on validation_data
    # Otherwise use CV

    X_for_search = X
    y_for_search = y

    if validation_data is not None:
        from sklearn.model_selection import PredefinedSplit

        X_val, y_val = validation_data

        # Concatenate Train and Val (Numpy arrays)
        X_for_search = np.concatenate([X, X_val], axis=0)
        y_for_search = np.concatenate([y, y_val], axis=0)

        # Create test_fold array: -1 for train, 0 for val
        # -1 means "never in test set" (so always in training set)
        # 0 means "in test set for fold 0"
        test_fold = np.concatenate([np.full(len(X), -1), np.full(len(X_val), 0)])

        cv = PredefinedSplit(test_fold)
    else:
        if not config.cv_enabled:
            # Single split validation (20% holdout)
            cv = ShuffleSplit(
                n_splits=1, test_size=0.2, random_state=config.random_state
            )
        elif config.cv_type == "time_series_split":
            cv = TimeSeriesSplit(n_splits=config.cv_folds)
        elif config.cv_type == "shuffle_split":
            cv = ShuffleSplit(
                n_splits=config.cv_folds,
                test_size=0.2,
                random_state=config.random_state,
            )
        elif (
            config.cv_type == "stratified_k_fold"
            and self.model_calculator.problem_type == "classification"
        ):
            cv = StratifiedKFold(
                n_splits=config.cv_folds,
                shuffle=True,
                random_state=config.random_state,
            )
        else:
            # Default to KFold (also fallback for stratified if regression)
            cv = KFold(
                n_splits=config.cv_folds,
                shuffle=True,
                random_state=config.random_state,
            )

    # 3. Select Search Strategy
    searcher = None

    # Handle multiclass metrics and map user-friendly names
    metric = config.metric

    # Map common user-friendly metrics to sklearn scoring strings
    metric_map = {
        "mse": "neg_mean_squared_error",
        "mae": "neg_mean_absolute_error",
        "rmse": "neg_root_mean_squared_error",
        "r2": "r2",
        "accuracy": "accuracy",
        "f1": "f1",
        "precision": "precision",
        "recall": "recall",
        "roc_auc": "roc_auc",
    }

    if metric in metric_map:
        metric = metric_map[metric]

    if self.model_calculator.problem_type == "classification":
        # Check if target is multiclass
        is_multiclass = False
        if isinstance(y, pd.Series):
            is_multiclass = y.nunique() > 2
        elif isinstance(y, np.ndarray):
            is_multiclass = len(np.unique(y)) > 2

        # If multiclass and metric is binary-default, switch to weighted
        # Note: We check against the mapped names now (e.g. "f1", "precision")
        if is_multiclass and metric in ["f1", "precision", "recall", "roc_auc"]:
            metric = f"{metric}_weighted"
            # roc_auc needs special handling (ovr/ovo) usually, but weighted often works for simple cases
            if (
                config.metric == "roc_auc"
            ):  # Check original config metric name just in case
                metric = "roc_auc_ovr_weighted"

    if config.strategy in ["grid", "random"]:
        # Use custom loop to support progress and log callbacks
        if log_callback:
            log_callback(
                f"Starting {config.strategy} search with custom loop for detailed logging..."
            )

        # 1. Generate Candidates
        param_space = self._clean_search_space(config.search_space)
        candidates = []

        if config.strategy == "grid":
            candidates = list(ParameterGrid(param_space))
        else:
            # Random Search
            candidates = list(
                ParameterSampler(
                    param_space,
                    n_iter=config.n_trials,
                    random_state=config.random_state,
                )
            )

        total_candidates = len(candidates)
        if log_callback:
            log_callback(f"Total candidates to evaluate: {total_candidates}")

        trials: List[Dict[str, Any]] = []
        best_score = -float("inf")
        best_params = None

        # 2. Iterate Candidates
        for i, params in enumerate(candidates):
            if log_callback:
                log_callback(
                    f"Evaluating Candidate {i + 1}/{total_candidates}: {params}"
                )

            # Use custom cross-validation loop to enable per-fold logging and progress tracking.
            # We instantiate the model with the current candidate parameters and evaluate it
            # using the configured CV strategy.

            fold_scores = []

            # Ensure numpy
            X_arr = (
                X_for_search.to_numpy()
                if hasattr(X_for_search, "to_numpy")
                else X_for_search
            )
            y_arr = (
                y_for_search.to_numpy()
                if hasattr(y_for_search, "to_numpy")
                else y_for_search
            )

            for fold_idx, (train_idx, val_idx) in enumerate(cv.split(X_arr, y_arr)):
                # Split
                X_train_fold = (
                    X_for_search.iloc[train_idx]
                    if hasattr(X_for_search, "iloc")
                    else X_for_search[train_idx]
                )
                y_train_fold = (
                    y_for_search.iloc[train_idx]
                    if hasattr(y_for_search, "iloc")
                    else y_for_search[train_idx]
                )
                X_val_fold = (
                    X_for_search.iloc[val_idx]
                    if hasattr(X_for_search, "iloc")
                    else X_for_search[val_idx]
                )
                y_val_fold = (
                    y_for_search.iloc[val_idx]
                    if hasattr(y_for_search, "iloc")
                    else y_for_search[val_idx]
                )

                # Instantiate and Fit
                # Note: We must handle potential errors (e.g. incompatible params)
                try:
                    model = self.model_calculator.model_class(
                        **{**self.model_calculator.default_params, **params}
                    )
                    model.fit(X_train_fold, y_train_fold)

                    # Score
                    from sklearn.metrics import get_scorer

                    scorer = get_scorer(metric)
                    score = scorer(model, X_val_fold, y_val_fold)
                    fold_scores.append(score)

                    if log_callback:
                        n_splits = cv.get_n_splits(X_arr, y_arr)
                        log_callback(
                            f"  [Candidate {i + 1}] CV Fold {fold_idx + 1}/{n_splits} Score: {score:.4f}"
                        )
                except Exception as e:
                    if log_callback:
                        n_splits = cv.get_n_splits(X_arr, y_arr)
                        log_callback(
                            f"  [Candidate {i + 1}] CV Fold {fold_idx + 1}/{n_splits} Failed: {str(e)}"
                        )
                    fold_scores.append(-float("inf"))

            # Filter out failed folds for mean calculation if possible, or penalize
            valid_scores = [s for s in fold_scores if s != -float("inf")]
            if valid_scores:
                mean_score = np.mean(valid_scores)
            else:
                mean_score = -float("inf")

            if log_callback:
                log_callback(f"Candidate {i + 1} Mean Score: {mean_score:.4f}")

            if progress_callback:
                progress_callback(i + 1, total_candidates, mean_score, params)

            trials.append({"params": params, "score": mean_score})

            if mean_score > best_score:
                best_score = mean_score
                best_params = params

        if log_callback:
            log_callback(f"Tuning Completed. Best Score: {best_score:.4f}")
            log_callback(f"Best Params: {best_params}")

        return TuningResult(
            best_params=best_params if best_params is not None else {},
            best_score=best_score,
            n_trials=total_candidates,
            trials=trials,
        )

    elif config.strategy == "halving_grid":
        searcher = HalvingGridSearchCV(
            estimator=base_estimator,
            param_grid=self._clean_search_space(config.search_space),
            scoring=metric,
            cv=cv,
            n_jobs=-1,
            random_state=config.random_state,
            refit=False,
            error_score=np.nan,
        )
    elif config.strategy == "halving_random":
        searcher = HalvingRandomSearchCV(
            estimator=base_estimator,
            param_distributions=self._clean_search_space(config.search_space),
            n_candidates=config.n_trials,  # Map n_trials to n_candidates
            scoring=metric,
            cv=cv,
            n_jobs=-1,
            random_state=config.random_state,
            refit=False,
            error_score=np.nan,
        )
    elif config.strategy == "optuna":
        if not HAS_OPTUNA:
            raise ImportError(
                "Optuna is not installed. Please install 'optuna' and 'optuna-integration'."
            )

        # Convert search space to Optuna distributions
        distributions = {}
        for k, v in config.search_space.items():
            if isinstance(v, list):
                distributions[k] = optuna.distributions.CategoricalDistribution(v)
            else:
                distributions[k] = v

        # Optuna callbacks
        callbacks = []
        if progress_callback:

            def _optuna_callback(study, trial):
                # Optuna doesn't know total trials upfront easily if not set, but we have config.n_trials
                # trial.value is the score (or None if failed/pruned)
                score = trial.value if trial.value is not None else None

                if log_callback:
                    log_callback(
                        f"Optuna Trial {trial.number + 1} finished. Mean CV Score: {score}"
                    )

                progress_callback(
                    trial.number + 1, config.n_trials, score, trial.params
                )

            callbacks.append(_optuna_callback)

        searcher = OptunaSearchCV(
            estimator=base_estimator,
            param_distributions=distributions,
            n_trials=config.n_trials,
            timeout=config.timeout,
            cv=cv,  # type: ignore
            scoring=metric,
            n_jobs=-1,
            random_state=config.random_state,
            refit=False,
            verbose=0,
            callbacks=callbacks,
        )
    else:
        raise ValueError(f"Unknown tuning strategy: {config.strategy}")

    # 4. Run Search
    # Ensure numpy
    X_arr = (
        X_for_search.to_numpy()
        if hasattr(X_for_search, "to_numpy")
        else X_for_search
    )
    y_arr = (
        y_for_search.to_numpy()
        if hasattr(y_for_search, "to_numpy")
        else y_for_search
    )

    try:
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore",
                message="Failed to report cross validation scores for TerminatorCallback",
            )
            searcher.fit(X_arr, y_arr)
    except Exception as e:
        logger.error(f"Hyperparameter tuning failed: {str(e)}")
        error_msg = str(e)
        if "No trials are completed yet" in error_msg:
            raise ValueError(
                "Hyperparameter tuning failed: No trials completed successfully. "
                "This usually means the model failed to train with the provided hyperparameter combinations. "
                "Please check your search space and data."
            ) from e

        if (
            "n_samples" in error_msg
            and "resample" in error_msg
            and "Got 0" in error_msg
        ):
            raise ValueError(
                "Hyperparameter tuning with Halving strategy failed because the dataset is too small "
                "for the configured halving parameters. Please try using 'Random Search' or 'Grid Search' instead, "
                "or increase your dataset size."
            ) from e

        raise e

    # 5. Extract Results
    if not hasattr(searcher, "best_params_"):
        raise ValueError(
            "Hyperparameter tuning failed to find any valid combination of parameters. All trials likely failed."
        )

    best_params = searcher.best_params_
    best_score = searcher.best_score_

    # Collect trials
    trials = []
    # Special handling for Optuna
    if config.strategy == "optuna" and hasattr(searcher, "study_"):
        for trial in searcher.study_.trials:
            # Only include completed trials
            if trial.state.name == "COMPLETE":
                trials.append({"params": trial.params, "score": trial.value})
    elif hasattr(searcher, "cv_results_"):
        results = searcher.cv_results_
        if "params" in results:
            n_candidates = len(results["params"])
            for i in range(n_candidates):
                trials.append(
                    {
                        "params": results["params"][i],
                        "score": results["mean_test_score"][i],
                    }
                )

    return TuningResult(
        best_params=best_params,
        best_score=best_score,
        n_trials=len(trials),
        trials=trials,
    )