Getting Started (skyulf-core)
This page is the fastest path to running skyulf-core locally.
Install
From the repository root:
pip install -e ./skyulf-core
Minimal end-to-end example
SkyulfPipeline expects a configuration with:
preprocessing: a list of stepsmodeling: a single model config
import pandas as pd
from skyulf.pipeline import SkyulfPipeline
df = pd.DataFrame(
{
"age": [10, 20, None, 40],
"city": ["A", "B", "A", "C"],
"target": [0, 1, 0, 1],
}
)
config = {
"preprocessing": [
{
"name": "impute_age",
"transformer": "SimpleImputer",
"params": {"columns": ["age"], "strategy": "mean"},
},
{
"name": "encode_city",
"transformer": "OneHotEncoder",
"params": {"columns": ["city"], "drop_original": True},
},
],
"modeling": {
"type": "logistic_regression",
"params": {"max_iter": 1000},
},
}
pipeline = SkyulfPipeline(config)
metrics = pipeline.fit(df, target_column="target")
preds = pipeline.predict(df.drop(columns=["target"]))
print(metrics)
print(preds.head())
Next steps
- Read the User Guide section “Pipeline Quickstart” for train/test splits.
- Use the Reference section for supported preprocessing and modeling nodes.