Skip to content

API: preprocessing.pipeline

skyulf.preprocessing.pipeline

Feature Engineering Pipeline Orchestrator.

FeatureEngineer

Orchestrates a sequence of feature engineering steps.

Source code in skyulf-core\skyulf\preprocessing\pipeline.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
class FeatureEngineer:
    """
    Orchestrates a sequence of feature engineering steps.
    """

    def __init__(self, steps_config: List[Dict[str, Any]]):
        self.steps_config = steps_config
        self.fitted_steps: List[Dict[str, Any]] = []

    def transform(self, data: pd.DataFrame) -> pd.DataFrame:
        """
        Apply fitted transformations to new data.
        """
        current_data = data

        for step in self.fitted_steps:
            name = step["name"]
            transformer_type = step["type"]
            applier = step["applier"]
            artifact = step["artifact"]

            # Skip splitters during inference/transform
            if transformer_type in [
                "TrainTestSplitter",
                "feature_target_split",
                "Oversampling",
                "Undersampling",
            ]:
                continue

            logger.debug(f"Applying step: {name} ({transformer_type})")
            current_data = applier.apply(current_data, artifact)

        return current_data

    def fit_transform(self, data: Union[pd.DataFrame, Any], node_id_prefix="") -> Any:  # noqa: C901
        """
        Runs the pipeline on data.
        Returns: (transformed_data, metrics_dict)
        """
        self.fitted_steps = []  # Reset fitted steps
        current_data = data
        metrics: Dict[str, Any] = {}

        for i, step in enumerate(self.steps_config):
            name = step["name"]
            transformer_type = step["transformer"]
            params = step.get("params", {})

            logger.info(f"Running step {i}: {name} ({transformer_type})")
            logger.debug(
                f"FeatureEngineer running step {i}: {name} ({transformer_type})"
            )
            logger.debug(f"current_data type: {type(current_data)}")

            # Capture metrics before
            rows_before, cols_before = get_data_stats(current_data)

            # Keep reference for comparison (for Winsorize metrics)
            data_before = current_data

            calculator, applier = self._get_transformer_components(transformer_type)

            # We need a unique ID for this step's artifacts
            step_node_id = f"{node_id_prefix}_{name}"

            transformer = StatefulTransformer(calculator, applier, step_node_id)

            # Handle special transformers that change data structure
            # Splitters return SplitDataset or (X, y) tuples instead of a simple DataFrame,
            # so they bypass the standard StatefulTransformer wrapper.

            # Initialize fitted_params
            fitted_params = {}

            if transformer_type == "TrainTestSplitter":
                logger.debug("Handling TrainTestSplitter")
                # TrainTestSplitter changes DataFrame -> SplitDataset.
                # We bypass StatefulTransformer to allow this structural change.
                # It can also handle (X, y) tuple if FeatureTargetSplit was done first.
                if isinstance(current_data, (pd.DataFrame, tuple)):
                    logger.debug("Executing TrainTestSplitter logic")
                    params = calculator.fit(current_data, params)
                    current_data = applier.apply(current_data, params)
                    # In SDK, params are returned but not auto-saved to artifact store here.
                    # The Pipeline object will handle state persistence.
                else:
                    logger.debug(
                        f"Skipping TrainTestSplitter. current_data is {type(current_data)}"
                    )
                    logger.warning(
                        "Attempting to split an already split dataset. Skipping TrainTestSplitter."
                    )

            elif transformer_type == "feature_target_split":
                logger.debug("Handling feature_target_split")
                # FeatureTargetSplitter changes structure to (X, y) or Dict of (X, y).
                # We bypass StatefulTransformer to allow this structural change.
                params = calculator.fit(current_data, params)
                current_data = applier.apply(current_data, params)

            else:
                logger.debug("Handling standard transformer via StatefulTransformer")
                current_data = transformer.fit_transform(current_data, params)
                # In SDK, transformer.params holds the state.
                fitted_params = transformer.params

                self.fitted_steps.append(
                    {
                        "name": name,
                        "type": transformer_type,
                        "applier": applier,
                        "artifact": fitted_params,
                    }
                )

            logger.debug(f"Step {i} complete. New data type: {type(current_data)}")

            # Retrieve fitted params to get metrics from the calculator
            try:
                if fitted_params:
                    # Imputation Metrics
                    if transformer_type in [
                        "SimpleImputer",
                        "KNNImputer",
                        "IterativeImputer",
                    ]:
                        if "missing_counts" in fitted_params:
                            metrics["missing_counts"] = fitted_params["missing_counts"]
                        if "total_missing" in fitted_params:
                            metrics["total_missing"] = fitted_params["total_missing"]
                        if "fill_values" in fitted_params:
                            metrics["fill_values"] = fitted_params["fill_values"]

                    # Feature Selection Metrics
                    if transformer_type in [
                        "feature_selection",
                        "UnivariateSelection",
                        "ModelBasedSelection",
                        "VarianceThreshold",
                    ]:
                        if "feature_scores" in fitted_params:
                            metrics["feature_scores"] = fitted_params["feature_scores"]
                        if "p_values" in fitted_params:
                            metrics["p_values"] = fitted_params["p_values"]
                        if "feature_importances" in fitted_params:
                            metrics["feature_importances"] = fitted_params[
                                "feature_importances"
                            ]
                        if "variances" in fitted_params:
                            metrics["variances"] = fitted_params["variances"]
                        if "ranking" in fitted_params:
                            metrics["ranking"] = fitted_params["ranking"]
                        if "selected_columns" in fitted_params:
                            metrics["selected_columns"] = fitted_params[
                                "selected_columns"
                            ]

                    # Scaling Metrics
                    if transformer_type in [
                        "StandardScaler",
                        "MinMaxScaler",
                        "RobustScaler",
                        "MaxAbsScaler",
                    ]:
                        if "mean" in fitted_params:
                            metrics["mean"] = fitted_params["mean"]
                        if "scale" in fitted_params:
                            metrics["scale"] = fitted_params["scale"]
                        if "var" in fitted_params:
                            metrics["var"] = fitted_params["var"]
                        if "min" in fitted_params:
                            metrics["min"] = fitted_params["min"]
                        if "data_min" in fitted_params:
                            metrics["data_min"] = fitted_params["data_min"]
                        if "data_max" in fitted_params:
                            metrics["data_max"] = fitted_params["data_max"]
                        if "center" in fitted_params:
                            metrics["center"] = fitted_params["center"]
                        if "max_abs" in fitted_params:
                            metrics["max_abs"] = fitted_params["max_abs"]
                        if "columns" in fitted_params:
                            metrics["columns"] = fitted_params["columns"]

                    # Outlier Metrics
                    if transformer_type in [
                        "IQR",
                        "Winsorize",
                        "ZScore",
                        "EllipticEnvelope",
                    ]:
                        if "warnings" in fitted_params:
                            metrics["warnings"] = fitted_params["warnings"]

                    if transformer_type in ["IQR", "Winsorize"]:
                        if "bounds" in fitted_params:
                            metrics["bounds"] = fitted_params["bounds"]

                    if transformer_type == "ZScore":
                        if "stats" in fitted_params:
                            metrics["stats"] = fitted_params["stats"]

                    if transformer_type == "EllipticEnvelope":
                        if "contamination" in fitted_params:
                            metrics["contamination"] = fitted_params["contamination"]

                    # Bucketing Metrics
                    if transformer_type in [
                        "GeneralBinning",
                        "EqualWidthBinning",
                        "EqualFrequencyBinning",
                        "CustomBinning",
                        "KBinsDiscretizer",
                    ]:
                        if "bin_edges" in fitted_params:
                            metrics["bin_edges"] = fitted_params["bin_edges"]
                        if "n_bins" in fitted_params:
                            metrics["n_bins"] = fitted_params["n_bins"]

                    # Feature Generation Metrics
                    if transformer_type in ["FeatureMath", "FeatureGenerationNode"]:
                        if "operations" in fitted_params:
                            metrics["operations_count"] = len(
                                fitted_params["operations"]
                            )
                            metrics["operations"] = fitted_params["operations"]
                        # Calculate generated features by comparing columns
                        if isinstance(data_before, pd.DataFrame) and isinstance(
                            current_data, pd.DataFrame
                        ):
                            new_cols = list(
                                set(current_data.columns) - set(data_before.columns)
                            )
                            metrics["generated_features"] = new_cols
                        elif isinstance(data_before, SplitDataset) and isinstance(
                            current_data, SplitDataset
                        ):
                            # Check train set
                            if isinstance(
                                data_before.train, pd.DataFrame
                            ) and isinstance(current_data.train, pd.DataFrame):
                                new_cols = list(
                                    set(current_data.train.columns)
                                    - set(data_before.train.columns)
                                )
                                metrics["generated_features"] = new_cols
                            elif isinstance(data_before.train, tuple) and isinstance(
                                current_data.train, tuple
                            ):
                                # (X, y) tuple
                                X_before, _ = data_before.train
                                X_after, _ = current_data.train
                                if isinstance(X_before, pd.DataFrame) and isinstance(
                                    X_after, pd.DataFrame
                                ):
                                    new_cols = list(
                                        set(X_after.columns) - set(X_before.columns)
                                    )
                                    metrics["generated_features"] = new_cols

            except Exception as e:
                logger.warning(f"Failed to retrieve metrics for step {name}: {e}")

            # Capture metrics after
            rows_after, cols_after = get_data_stats(current_data)

            # Resampling Metrics (Calculated from data)
            if transformer_type in ["Oversampling", "Undersampling"]:
                try:
                    # Extract y to calculate class counts
                    y_res = None
                    if isinstance(current_data, SplitDataset):
                        if isinstance(current_data.train, tuple):
                            _, y_res = current_data.train
                        elif isinstance(current_data.train, pd.DataFrame):
                            # Try to find target column from params
                            target_col = params.get("target_column")
                            if target_col and target_col in current_data.train.columns:
                                y_res = current_data.train[target_col]
                    elif isinstance(current_data, tuple):
                        _, y_res = current_data
                    elif isinstance(current_data, pd.DataFrame):
                        target_col = params.get("target_column")
                        if target_col and target_col in current_data.columns:
                            y_res = current_data[target_col]

                    if y_res is not None:
                        counts = y_res.value_counts().to_dict()
                        # Convert keys to string to ensure JSON serializability
                        metrics["class_counts"] = {
                            str(k): int(v) for k, v in counts.items()
                        }
                        metrics["total_samples"] = int(len(y_res))
                except Exception as e:
                    logger.warning(f"Failed to calculate resampling metrics: {e}")

            if rows_after > 0 or cols_after:
                if transformer_type in [
                    "DropMissingRows",
                    "Deduplicate",
                    "IQR",
                    "ZScore",
                    "EllipticEnvelope",
                    "Winsorize",
                ]:
                    dropped = rows_before - rows_after
                    metrics[f"{transformer_type}_rows_removed"] = dropped
                    metrics[f"{transformer_type}_rows_remaining"] = rows_after
                    metrics[f"{transformer_type}_rows_total"] = rows_before
                    metrics["rows_removed"] = dropped
                    metrics["rows_total"] = rows_before

                    # Special metric for Winsorize: Values Clipped
                    if transformer_type == "Winsorize":
                        try:
                            clipped_count = 0

                            # Helper to count diffs
                            def count_diffs(df1, df2):
                                if isinstance(df1, pd.DataFrame) and isinstance(
                                    df2, pd.DataFrame
                                ):
                                    if df1.shape == df2.shape:
                                        return int(df1.ne(df2).sum().sum())
                                elif (
                                    isinstance(df1, tuple)
                                    and isinstance(df2, tuple)
                                    and len(df1) == 2
                                    and len(df2) == 2
                                ):
                                    # Handle (X, y) tuple
                                    diffs = 0
                                    # Compare X (index 0)
                                    if isinstance(df1[0], pd.DataFrame) and isinstance(
                                        df2[0], pd.DataFrame
                                    ):
                                        if df1[0].shape == df2[0].shape:
                                            diffs += int(df1[0].ne(df2[0]).sum().sum())
                                    # Compare y (index 1) - usually Series
                                    if isinstance(
                                        df1[1], (pd.DataFrame, pd.Series)
                                    ) and isinstance(df2[1], (pd.DataFrame, pd.Series)):
                                        if df1[1].shape == df2[1].shape:
                                            diffs += int(df1[1].ne(df2[1]).sum().sum())  # type: ignore
                                    return diffs
                                return 0

                            if isinstance(data_before, pd.DataFrame) and isinstance(
                                current_data, pd.DataFrame
                            ):
                                clipped_count = count_diffs(data_before, current_data)
                            elif isinstance(data_before, SplitDataset) and isinstance(
                                current_data, SplitDataset
                            ):
                                clipped_count += count_diffs(
                                    data_before.train, current_data.train
                                )
                                clipped_count += count_diffs(
                                    data_before.test, current_data.test
                                )
                                clipped_count += count_diffs(
                                    data_before.validation, current_data.validation
                                )

                            metrics["values_clipped"] = clipped_count
                        except Exception as e:
                            logger.warning(
                                f"Failed to calculate values_clipped for Winsorize: {e}"
                            )
                            pass

                if transformer_type == "MissingIndicator":
                    new_cols_set = cols_after - cols_before
                    metrics["missing_indicators_created"] = len(new_cols_set)
                    cast(Dict[str, Any], metrics)["missing_indicators_columns"] = list(
                        new_cols_set
                    )

                if transformer_type == "DropMissingColumns":
                    dropped_cols_set = cols_before - cols_after
                    cast(Dict[str, Any], metrics)["dropped_columns"] = list(
                        dropped_cols_set
                    )
                    metrics["dropped_columns_count"] = len(dropped_cols_set)

                if transformer_type == "feature_selection":
                    dropped_cols_set = cols_before - cols_after
                    cast(Dict[str, Any], metrics)["dropped_columns"] = list(
                        dropped_cols_set
                    )
                    metrics["dropped_columns_count"] = len(dropped_cols_set)

                if transformer_type in [
                    "OneHotEncoder",
                    "LabelEncoder",
                    "OrdinalEncoder",
                    "TargetEncoder",
                    "HashEncoder",
                    "DummyEncoder",
                ]:
                    new_cols_set = cols_after - cols_before
                    metrics["new_features_count"] = len(new_cols_set)
                    metrics["encoded_columns_count"] = len(params.get("columns", []))

                    if "categories_count" in params:
                        metrics["categories_count"] = params["categories_count"]
                    if "classes_count" in params:
                        metrics["classes_count"] = params["classes_count"]

        return current_data, metrics

    def _get_transformer_components(self, type_name: str):  # noqa: C901
        # Try Registry first
        try:
            return (
                NodeRegistry.get_calculator(type_name)(),
                NodeRegistry.get_applier(type_name)(),
            )
        except ValueError:
            raise ValueError(f"Unknown transformer type: {type_name}")

fit_transform(data, node_id_prefix='')

Runs the pipeline on data. Returns: (transformed_data, metrics_dict)

Source code in skyulf-core\skyulf\preprocessing\pipeline.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def fit_transform(self, data: Union[pd.DataFrame, Any], node_id_prefix="") -> Any:  # noqa: C901
    """
    Runs the pipeline on data.
    Returns: (transformed_data, metrics_dict)
    """
    self.fitted_steps = []  # Reset fitted steps
    current_data = data
    metrics: Dict[str, Any] = {}

    for i, step in enumerate(self.steps_config):
        name = step["name"]
        transformer_type = step["transformer"]
        params = step.get("params", {})

        logger.info(f"Running step {i}: {name} ({transformer_type})")
        logger.debug(
            f"FeatureEngineer running step {i}: {name} ({transformer_type})"
        )
        logger.debug(f"current_data type: {type(current_data)}")

        # Capture metrics before
        rows_before, cols_before = get_data_stats(current_data)

        # Keep reference for comparison (for Winsorize metrics)
        data_before = current_data

        calculator, applier = self._get_transformer_components(transformer_type)

        # We need a unique ID for this step's artifacts
        step_node_id = f"{node_id_prefix}_{name}"

        transformer = StatefulTransformer(calculator, applier, step_node_id)

        # Handle special transformers that change data structure
        # Splitters return SplitDataset or (X, y) tuples instead of a simple DataFrame,
        # so they bypass the standard StatefulTransformer wrapper.

        # Initialize fitted_params
        fitted_params = {}

        if transformer_type == "TrainTestSplitter":
            logger.debug("Handling TrainTestSplitter")
            # TrainTestSplitter changes DataFrame -> SplitDataset.
            # We bypass StatefulTransformer to allow this structural change.
            # It can also handle (X, y) tuple if FeatureTargetSplit was done first.
            if isinstance(current_data, (pd.DataFrame, tuple)):
                logger.debug("Executing TrainTestSplitter logic")
                params = calculator.fit(current_data, params)
                current_data = applier.apply(current_data, params)
                # In SDK, params are returned but not auto-saved to artifact store here.
                # The Pipeline object will handle state persistence.
            else:
                logger.debug(
                    f"Skipping TrainTestSplitter. current_data is {type(current_data)}"
                )
                logger.warning(
                    "Attempting to split an already split dataset. Skipping TrainTestSplitter."
                )

        elif transformer_type == "feature_target_split":
            logger.debug("Handling feature_target_split")
            # FeatureTargetSplitter changes structure to (X, y) or Dict of (X, y).
            # We bypass StatefulTransformer to allow this structural change.
            params = calculator.fit(current_data, params)
            current_data = applier.apply(current_data, params)

        else:
            logger.debug("Handling standard transformer via StatefulTransformer")
            current_data = transformer.fit_transform(current_data, params)
            # In SDK, transformer.params holds the state.
            fitted_params = transformer.params

            self.fitted_steps.append(
                {
                    "name": name,
                    "type": transformer_type,
                    "applier": applier,
                    "artifact": fitted_params,
                }
            )

        logger.debug(f"Step {i} complete. New data type: {type(current_data)}")

        # Retrieve fitted params to get metrics from the calculator
        try:
            if fitted_params:
                # Imputation Metrics
                if transformer_type in [
                    "SimpleImputer",
                    "KNNImputer",
                    "IterativeImputer",
                ]:
                    if "missing_counts" in fitted_params:
                        metrics["missing_counts"] = fitted_params["missing_counts"]
                    if "total_missing" in fitted_params:
                        metrics["total_missing"] = fitted_params["total_missing"]
                    if "fill_values" in fitted_params:
                        metrics["fill_values"] = fitted_params["fill_values"]

                # Feature Selection Metrics
                if transformer_type in [
                    "feature_selection",
                    "UnivariateSelection",
                    "ModelBasedSelection",
                    "VarianceThreshold",
                ]:
                    if "feature_scores" in fitted_params:
                        metrics["feature_scores"] = fitted_params["feature_scores"]
                    if "p_values" in fitted_params:
                        metrics["p_values"] = fitted_params["p_values"]
                    if "feature_importances" in fitted_params:
                        metrics["feature_importances"] = fitted_params[
                            "feature_importances"
                        ]
                    if "variances" in fitted_params:
                        metrics["variances"] = fitted_params["variances"]
                    if "ranking" in fitted_params:
                        metrics["ranking"] = fitted_params["ranking"]
                    if "selected_columns" in fitted_params:
                        metrics["selected_columns"] = fitted_params[
                            "selected_columns"
                        ]

                # Scaling Metrics
                if transformer_type in [
                    "StandardScaler",
                    "MinMaxScaler",
                    "RobustScaler",
                    "MaxAbsScaler",
                ]:
                    if "mean" in fitted_params:
                        metrics["mean"] = fitted_params["mean"]
                    if "scale" in fitted_params:
                        metrics["scale"] = fitted_params["scale"]
                    if "var" in fitted_params:
                        metrics["var"] = fitted_params["var"]
                    if "min" in fitted_params:
                        metrics["min"] = fitted_params["min"]
                    if "data_min" in fitted_params:
                        metrics["data_min"] = fitted_params["data_min"]
                    if "data_max" in fitted_params:
                        metrics["data_max"] = fitted_params["data_max"]
                    if "center" in fitted_params:
                        metrics["center"] = fitted_params["center"]
                    if "max_abs" in fitted_params:
                        metrics["max_abs"] = fitted_params["max_abs"]
                    if "columns" in fitted_params:
                        metrics["columns"] = fitted_params["columns"]

                # Outlier Metrics
                if transformer_type in [
                    "IQR",
                    "Winsorize",
                    "ZScore",
                    "EllipticEnvelope",
                ]:
                    if "warnings" in fitted_params:
                        metrics["warnings"] = fitted_params["warnings"]

                if transformer_type in ["IQR", "Winsorize"]:
                    if "bounds" in fitted_params:
                        metrics["bounds"] = fitted_params["bounds"]

                if transformer_type == "ZScore":
                    if "stats" in fitted_params:
                        metrics["stats"] = fitted_params["stats"]

                if transformer_type == "EllipticEnvelope":
                    if "contamination" in fitted_params:
                        metrics["contamination"] = fitted_params["contamination"]

                # Bucketing Metrics
                if transformer_type in [
                    "GeneralBinning",
                    "EqualWidthBinning",
                    "EqualFrequencyBinning",
                    "CustomBinning",
                    "KBinsDiscretizer",
                ]:
                    if "bin_edges" in fitted_params:
                        metrics["bin_edges"] = fitted_params["bin_edges"]
                    if "n_bins" in fitted_params:
                        metrics["n_bins"] = fitted_params["n_bins"]

                # Feature Generation Metrics
                if transformer_type in ["FeatureMath", "FeatureGenerationNode"]:
                    if "operations" in fitted_params:
                        metrics["operations_count"] = len(
                            fitted_params["operations"]
                        )
                        metrics["operations"] = fitted_params["operations"]
                    # Calculate generated features by comparing columns
                    if isinstance(data_before, pd.DataFrame) and isinstance(
                        current_data, pd.DataFrame
                    ):
                        new_cols = list(
                            set(current_data.columns) - set(data_before.columns)
                        )
                        metrics["generated_features"] = new_cols
                    elif isinstance(data_before, SplitDataset) and isinstance(
                        current_data, SplitDataset
                    ):
                        # Check train set
                        if isinstance(
                            data_before.train, pd.DataFrame
                        ) and isinstance(current_data.train, pd.DataFrame):
                            new_cols = list(
                                set(current_data.train.columns)
                                - set(data_before.train.columns)
                            )
                            metrics["generated_features"] = new_cols
                        elif isinstance(data_before.train, tuple) and isinstance(
                            current_data.train, tuple
                        ):
                            # (X, y) tuple
                            X_before, _ = data_before.train
                            X_after, _ = current_data.train
                            if isinstance(X_before, pd.DataFrame) and isinstance(
                                X_after, pd.DataFrame
                            ):
                                new_cols = list(
                                    set(X_after.columns) - set(X_before.columns)
                                )
                                metrics["generated_features"] = new_cols

        except Exception as e:
            logger.warning(f"Failed to retrieve metrics for step {name}: {e}")

        # Capture metrics after
        rows_after, cols_after = get_data_stats(current_data)

        # Resampling Metrics (Calculated from data)
        if transformer_type in ["Oversampling", "Undersampling"]:
            try:
                # Extract y to calculate class counts
                y_res = None
                if isinstance(current_data, SplitDataset):
                    if isinstance(current_data.train, tuple):
                        _, y_res = current_data.train
                    elif isinstance(current_data.train, pd.DataFrame):
                        # Try to find target column from params
                        target_col = params.get("target_column")
                        if target_col and target_col in current_data.train.columns:
                            y_res = current_data.train[target_col]
                elif isinstance(current_data, tuple):
                    _, y_res = current_data
                elif isinstance(current_data, pd.DataFrame):
                    target_col = params.get("target_column")
                    if target_col and target_col in current_data.columns:
                        y_res = current_data[target_col]

                if y_res is not None:
                    counts = y_res.value_counts().to_dict()
                    # Convert keys to string to ensure JSON serializability
                    metrics["class_counts"] = {
                        str(k): int(v) for k, v in counts.items()
                    }
                    metrics["total_samples"] = int(len(y_res))
            except Exception as e:
                logger.warning(f"Failed to calculate resampling metrics: {e}")

        if rows_after > 0 or cols_after:
            if transformer_type in [
                "DropMissingRows",
                "Deduplicate",
                "IQR",
                "ZScore",
                "EllipticEnvelope",
                "Winsorize",
            ]:
                dropped = rows_before - rows_after
                metrics[f"{transformer_type}_rows_removed"] = dropped
                metrics[f"{transformer_type}_rows_remaining"] = rows_after
                metrics[f"{transformer_type}_rows_total"] = rows_before
                metrics["rows_removed"] = dropped
                metrics["rows_total"] = rows_before

                # Special metric for Winsorize: Values Clipped
                if transformer_type == "Winsorize":
                    try:
                        clipped_count = 0

                        # Helper to count diffs
                        def count_diffs(df1, df2):
                            if isinstance(df1, pd.DataFrame) and isinstance(
                                df2, pd.DataFrame
                            ):
                                if df1.shape == df2.shape:
                                    return int(df1.ne(df2).sum().sum())
                            elif (
                                isinstance(df1, tuple)
                                and isinstance(df2, tuple)
                                and len(df1) == 2
                                and len(df2) == 2
                            ):
                                # Handle (X, y) tuple
                                diffs = 0
                                # Compare X (index 0)
                                if isinstance(df1[0], pd.DataFrame) and isinstance(
                                    df2[0], pd.DataFrame
                                ):
                                    if df1[0].shape == df2[0].shape:
                                        diffs += int(df1[0].ne(df2[0]).sum().sum())
                                # Compare y (index 1) - usually Series
                                if isinstance(
                                    df1[1], (pd.DataFrame, pd.Series)
                                ) and isinstance(df2[1], (pd.DataFrame, pd.Series)):
                                    if df1[1].shape == df2[1].shape:
                                        diffs += int(df1[1].ne(df2[1]).sum().sum())  # type: ignore
                                return diffs
                            return 0

                        if isinstance(data_before, pd.DataFrame) and isinstance(
                            current_data, pd.DataFrame
                        ):
                            clipped_count = count_diffs(data_before, current_data)
                        elif isinstance(data_before, SplitDataset) and isinstance(
                            current_data, SplitDataset
                        ):
                            clipped_count += count_diffs(
                                data_before.train, current_data.train
                            )
                            clipped_count += count_diffs(
                                data_before.test, current_data.test
                            )
                            clipped_count += count_diffs(
                                data_before.validation, current_data.validation
                            )

                        metrics["values_clipped"] = clipped_count
                    except Exception as e:
                        logger.warning(
                            f"Failed to calculate values_clipped for Winsorize: {e}"
                        )
                        pass

            if transformer_type == "MissingIndicator":
                new_cols_set = cols_after - cols_before
                metrics["missing_indicators_created"] = len(new_cols_set)
                cast(Dict[str, Any], metrics)["missing_indicators_columns"] = list(
                    new_cols_set
                )

            if transformer_type == "DropMissingColumns":
                dropped_cols_set = cols_before - cols_after
                cast(Dict[str, Any], metrics)["dropped_columns"] = list(
                    dropped_cols_set
                )
                metrics["dropped_columns_count"] = len(dropped_cols_set)

            if transformer_type == "feature_selection":
                dropped_cols_set = cols_before - cols_after
                cast(Dict[str, Any], metrics)["dropped_columns"] = list(
                    dropped_cols_set
                )
                metrics["dropped_columns_count"] = len(dropped_cols_set)

            if transformer_type in [
                "OneHotEncoder",
                "LabelEncoder",
                "OrdinalEncoder",
                "TargetEncoder",
                "HashEncoder",
                "DummyEncoder",
            ]:
                new_cols_set = cols_after - cols_before
                metrics["new_features_count"] = len(new_cols_set)
                metrics["encoded_columns_count"] = len(params.get("columns", []))

                if "categories_count" in params:
                    metrics["categories_count"] = params["categories_count"]
                if "classes_count" in params:
                    metrics["classes_count"] = params["classes_count"]

    return current_data, metrics

transform(data)

Apply fitted transformations to new data.

Source code in skyulf-core\skyulf\preprocessing\pipeline.py
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def transform(self, data: pd.DataFrame) -> pd.DataFrame:
    """
    Apply fitted transformations to new data.
    """
    current_data = data

    for step in self.fitted_steps:
        name = step["name"]
        transformer_type = step["type"]
        applier = step["applier"]
        artifact = step["artifact"]

        # Skip splitters during inference/transform
        if transformer_type in [
            "TrainTestSplitter",
            "feature_target_split",
            "Oversampling",
            "Undersampling",
        ]:
            continue

        logger.debug(f"Applying step: {name} ({transformer_type})")
        current_data = applier.apply(current_data, artifact)

    return current_data