API: modeling
skyulf.modeling
Modeling module for Skyulf.
BaseModelApplier
Bases: ABC
Source code in skyulf-core\skyulf\modeling\base.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | |
predict(df, model_artifact)
abstractmethod
Generates predictions.
Source code in skyulf-core\skyulf\modeling\base.py
48 49 50 51 52 53 | |
predict_proba(df, model_artifact)
Generates prediction probabilities if supported. Returns DataFrame where columns are classes.
Source code in skyulf-core\skyulf\modeling\base.py
55 56 57 58 59 60 61 62 | |
BaseModelCalculator
Bases: ABC
Source code in skyulf-core\skyulf\modeling\base.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | |
default_params
property
Default hyperparameters for the model.
problem_type
abstractmethod
property
Returns 'classification' or 'regression'.
fit(X, y, config, progress_callback=None, log_callback=None, validation_data=None)
abstractmethod
Trains the model. Returns the model object (serializable).
Source code in skyulf-core\skyulf\modeling\base.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 | |
HyperparameterField
dataclass
Describe a single tunable hyperparameter.
Source code in skyulf-core\skyulf\modeling\hyperparameters.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | |
LogisticRegressionApplier
Bases: SklearnApplier
Logistic Regression Applier.
Source code in skyulf-core\skyulf\modeling\classification.py
11 12 13 14 | |
LogisticRegressionCalculator
Bases: SklearnCalculator
Logistic Regression Calculator.
Source code in skyulf-core\skyulf\modeling\classification.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 | |
RandomForestClassifierApplier
Bases: SklearnApplier
Random Forest Classifier Applier.
Source code in skyulf-core\skyulf\modeling\classification.py
34 35 36 37 | |
RandomForestClassifierCalculator
Bases: SklearnCalculator
Random Forest Classifier Calculator.
Source code in skyulf-core\skyulf\modeling\classification.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | |
RandomForestRegressorApplier
Bases: SklearnApplier
Random Forest Regressor Applier.
Source code in skyulf-core\skyulf\modeling\regression.py
34 35 36 37 | |
RandomForestRegressorCalculator
Bases: SklearnCalculator
Random Forest Regressor Calculator.
Source code in skyulf-core\skyulf\modeling\regression.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | |
RidgeRegressionApplier
Bases: SklearnApplier
Ridge Regression Applier.
Source code in skyulf-core\skyulf\modeling\regression.py
11 12 13 14 | |
RidgeRegressionCalculator
Bases: SklearnCalculator
Ridge Regression Calculator.
Source code in skyulf-core\skyulf\modeling\regression.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 | |
SklearnApplier
Bases: BaseModelApplier
Base applier for Scikit-Learn models.
Source code in skyulf-core\skyulf\modeling\sklearn_wrapper.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | |
SklearnCalculator
Bases: BaseModelCalculator
Base calculator for Scikit-Learn models.
Source code in skyulf-core\skyulf\modeling\sklearn_wrapper.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | |
fit(X, y, config, progress_callback=None, log_callback=None, validation_data=None)
Fit the Scikit-Learn model.
Source code in skyulf-core\skyulf\modeling\sklearn_wrapper.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | |
StatefulEstimator
Source code in skyulf-core\skyulf\modeling\base.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | |
cross_validate(dataset, target_column, config, n_folds=5, cv_type='k_fold', shuffle=True, random_state=42, progress_callback=None, log_callback=None)
Performs cross-validation on the training split.
Source code in skyulf-core\skyulf\modeling\base.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | |
evaluate(dataset, target_column, job_id='unknown')
Evaluates the model on all splits and returns a detailed report.
Source code in skyulf-core\skyulf\modeling\base.py
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | |
fit_predict(dataset, target_column, config, progress_callback=None, log_callback=None, job_id='unknown')
Fits the model on training data and returns predictions for all splits.
Source code in skyulf-core\skyulf\modeling\base.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | |
refit(dataset, target_column, config, job_id='unknown')
Refits the model on Train + Validation data and updates the artifact.
Source code in skyulf-core\skyulf\modeling\base.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | |
perform_cross_validation(calculator, applier, X, y, config, n_folds=5, cv_type='k_fold', shuffle=True, random_state=42, progress_callback=None, log_callback=None)
Performs K-Fold cross-validation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
calculator
|
BaseModelCalculator
|
The model calculator (fit logic). |
required |
applier
|
BaseModelApplier
|
The model applier (predict logic). |
required |
X
|
Union[DataFrame, SkyulfDataFrame]
|
Features. |
required |
y
|
Union[Series, Any]
|
Target. |
required |
config
|
Dict[str, Any]
|
Model configuration. |
required |
n_folds
|
int
|
Number of folds. |
5
|
cv_type
|
str
|
Type of CV. |
'k_fold'
|
shuffle
|
bool
|
Whether to shuffle data before splitting (for KFold/Stratified). |
True
|
random_state
|
int
|
Random seed for shuffling. |
42
|
progress_callback
|
Optional[Callable[[int, int], None]]
|
Optional callback(current_fold, total_folds). |
None
|
log_callback
|
Optional[Callable[[str], None]]
|
Optional callback for logging messages. |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dict containing aggregated metrics and per-fold details. |
Source code in skyulf-core\skyulf\modeling\cross_validation.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | |